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Cell staining, separation, and measurement of isotopic enrichment in CLL-cell DNA 

PBMC were isolated from 50 ml of heparinized fresh blood by Ficoll-Paque (GE 

Healthcare, Piscataway, NJ, USA) density gradient centrifugation. CD3+ T cells were 

removed from these fractions by positive selection using anti-CD3 microbeads (Miltenyi 

Biotec, Inc.) following the manufacturer’s instructions. CD5+ B cells were separated from 

the CD3– fraction by incubation with anti-CD5 mAb conjugated with PE (BD Biosciences 

Immunocytometry Systems) for 20 minutes at 4°C, washing 4 times in buffer (PBS, 5% 

BSA, 2 mM EDTA), and subsequent incubation with anti-PE mAb linked to beads 

(Miltenyi Biotec Inc.). The CD5+ fraction, which contained greater than 95% CD19+ cells 

as assessed by flow cytometry, was centrifuged into a pellet and stored frozen at –20°C 

until further use. The enrichment of 2H2O in plasma was measured by gas 

chromatography/mass spectrometry (GC/MS) as described previously(1). 2H2O 

enrichment was calculated by comparison with standard curves generated by mixture of 

100% 2H2O with natural-abundance H2O in known proportions. 

Measurement of isotopic enrichment in CLL-cell DNA 

Isotope enrichment in CLL-cell DNA was analyzed as described(2). Briefly, DNA 

was isolated from CLL B cells and hydrolyzed to free nucleosides. Isotopic enrichment in 

a silylated derivative of the deoxyribose moiety of the purine nucleosides was measured 

by gas chromatography/pyrolysis/isotope ratio-mass spectrometry (GC/P/IR-MS). 

Samples were analyzed on a Finnigan DELTAPLUS XP IRMS instrument (ThermoFisher, 

Bremen, Germany) fitted with a DB-5ms column (Agilent, Santa Clara, CA). The fraction 

of newly divided CD5+CD19+ cells, f, at each sampled time point was calculated from the 
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2H enrichment (atom percent excess, APE) value. This value represents the isotope 

enrichment above natural abundance of deuterium due to incorporation of 2H2O into newly 

synthesized DNA (into the deoxyribose moiety), divided by the time-averaged 2H2O 

exposure prior to each sampled time point over the duration of the preceding labeling 

period.  

Calculation of fractional birth and death rates from CLL labeling data and CLL cell 

counts  

In vivo labeling of proliferating CLL cells was carried out by individuals drinking 

small volumes of 2H2O each day to stably enrich the body water pool with 2H2O, so that 

2H is incorporated into the DNA of cells that divide during the period of label exposure. 

The rate of cellular proliferation (or “birth rate”) was estimated in two complementary 

ways: first, during the period of 2H2O exposure in vivo, based on the rate of 2H 

incorporation into DNA of CLL cells; and, second, during the period after 2H2O had 

washed out of the body water pool, based on the dilution of previously 2H-labeled CLL 

cells by newly divided unlabeled cells. Specifically, in the pre-ibrutinib period, birth rate 

(kb) was calculated from the fraction of newly proliferated cells (f) during weeks 0-8 of 

2H2O incorporation (Figure 2B; averages of all patients shown) using a regression fit for 

results from serial time points based on a single pool monoexponential rise-to-plateau 

model (f = 1 – e(-k
b

* t))(2-4). In the post-ibrutinib period, between 6-12 weeks after cessation 

of heavy water administration, fractional birth rate (kb) was calculated from the decay rate 

of the proportion of cells containing 2H label in DNA, again using a regression fit (f = f0 * 

e(-k
b

* t)) to a monoexponential die-away model. The rates of change (R) in the pool size of 
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circulating CLL cells during the corresponding pre- and post-ibrutinib periods, or the net 

exponential growth rates, were calculated by a regression fit of the blood absolute 

lymphocyte count (ALC) (ALC = ALC0 * e(R*t)). In the post-ibrutinib period, the effect of 

any transient lymphocytosis on calculated birth and death rates was minimized by 

including in the exponential decay fit only the time points starting from the peak value of 

ALC measured for each individual after initiation of ibrutinib therapy and followed through 

the subsequent 10 weeks. All regression fits were performed using the Prism software 

package (Graph Pad, La Jolla, CA). Finally, death rates (kd) in the pre- and post-ibrutinib 

periods were calculated as the difference between the measured birth rate and the net 

exponential growth rate in blood ALC (kd = kb – R). Negative values for kd were assigned 

a value of zero.  

Tissue volumetric analysis 

The volume of lymphoid tissues and the spleen was quantified by computed 

tomography (CT) scans prior to therapy, and at the time of the first follow-up visit during 

ibrutinib therapy. Lymphoid tissue volumes were calculated from CT scans using the 

following method: the 5 largest conglomerations of LNs as well as the spleen were 

identified by visual inspection of the cases by a radiologist.  A contour was hand drawn 

around the center CT slice containing each conglomerate of nodes.  The area of the 

contoured region was used to calculate an effective radius using the formula for the area of 

a circle. For the spleen, a coronal diameter was also obtained and averaged with the 

effective axial diameter. The spherical volume was then calculated based on the effective 

radius. The total number of CLL cells in tissue was derived from the sum of measured 

tissue volumes, assuming that the average volume of a CLL cell is 166fl, as described(5).  
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Mathematical modeling and estimation of tissue death rates 

The dynamics of CLL cells during ibrutinib therapy can be modeled by ordinary 

differential equations, which describe the development of the CLL-cell populations over 

time. Denoting CLL cells in tissue compartments (spleen and LNs) by x, and CLL cells in 

the blood by y, the model is as follows(5): 

dx
dt

= −mx − d1(x + c)

dy
dt

= mx − d2y
 

 

In the tissue compartment, CLL cells are assumed to die with a rate d1, and are further 

assumed to redistribute to the blood with a rate m. In the blood, CLL cells are assumed to 

die with a rate d2. The parameter c describes phenomenologically the observation that the 

rate of decline of lymphocytes slows down over time and stabilizes around a steady state 

that can be higher than healthy levels. The reason behind this observation is not fully 

understood, so it is best to describe it in this phenomenological way. The model assumes 

the stabilization occurs in both the tissue and blood compartments. In accordance with prior 

preclinical data(6-8), lack of proliferation and tissue homing during ibrutinib therapy is 

assumed. This model was fit to the clinical data, and the best fit provided the parameter 

estimates. A comprehensive mathematical analysis of this mathematical model as well as 

issues related to fitting this model to clinical data are described in detail in(5).  In order to 

uniquely estimate parameters, the model needs to be fit not only to the trended lymphocyte 

counts in the blood, but also to data that document the tumor burden in the tissues. In our 

previous cohort (5), we estimated tissue disease burden from radiological data that 
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measured the volumes of lymph nodes and the spleen before treatment and during therapy. 

Because the tissue is mostly made up of CLL cells at disease stages when treatment is 

initiated, and since we know the average volume of CLL cells, we can estimate the total 

number of cells in the tissue. In our previous work(5), the volumetric measurements were 

taken before treatment, and at two time points during treatment. At the first time point 

during treatment in study (5) (between 1-2 months after start of ibrutinib therapy), tissue 

sizes were still sufficiently large to estimate the number of tissue cells with reasonable 

accuracy. At the third time point, however, tissue sizes had already shrunk to near normal 

levels. At this stage, tissue size is unlikely to be a good indicator of the number of CLL 

cells in tissue. The volume of the tissue will stop shrinking, while the number of CLL cells 

is still on the decline. Hence, such relatively small tissue volumes cannot be used for our 

estimates.  

 

In the current study, volumetric measurements were taken at two time points: before 

treatment, and about 80-90 days post treatment initiation. While the number of tissue cells 

before treatment could be reliably estimated from the tissue volumes, at the time point 

during ibrutinib therapy, the tissue volumes had already largely declined to near-normal 

levels, especially in those patients that responded relatively fast. Hence, the volumetric 

measurement during treatment could not be used to reliably estimate tissue tumor cell 

numbers in the current cohort. 

 

Therefore, the model was fit to the trended lymphocyte counts, taking into account the 

volumetric measurements before ibrutinib therapy. We assumed that the total tissue tumor 
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burden before treatment was within a range of ± 10% of the number of CLL cells estimated 

from the volumetric analysis. As we have shown previously (5), in such a setting, i.e. 

without taking into account an estimate of tissue disease burden during treatment, the 

model can give rise to the same predicted blood lymphocyte dynamics under two 

alternative parameter combinations, making it difficult to uniquely determine a best fitting 

parameter combination. However, in our previous work (5), where tissue disease burden 

could be reliably estimated before and during treatment, the best fitting parameter 

combinations could be uniquely determined, and this showed that in all patients, d1>d2, i.e. 

the death rate of CLL cells in tissue was found to be larger than that in blood. If we make 

the same assumption in the current cohort, then we can uniquely determine the parameter 

combination that best fits the data.   

 

Thus, assuming that d1>d2, the model was fit to the data as follows. As a first step, the 

model was simulated repeatedly for each patient with randomly chosen parameter values 

that were chosen from specified ranges. The sum of squared errors between observed and 

expected blood lymphocyte dynamics was calculated and recorded. This gave rise to “error 

landscapes” for each individual patient. Before discussing those, we specify the ranges 

from which parameter values were randomly chosen. 

d1 ∈[0.001,20], d2 ∈[0.001,0.5], m∈[0.0001,0.1].  The previously measured parameters 

(5) fall within these parameter ranges.  

The parameter c was varied between 0 and an upper bound that was given by an estimated 

number of cells derived from the volumetric measurement during treatment. While the 

tissue volumes had already declined too much to reliably estimate the number of cells in 
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the tissue, this calculation can provide an upper bound of how many cells can be maximally 

left in the tissue. Finally, the total number of tissue CLL cells before treatment, and the 

number CLL cells in the blood before treatment were allowed to vary ± 10% from the data 

measurements.  

 

We can plot the sum of squared errors between observed data and model predictions as a 

function of the tissue death rate d1 (but varying all parameters simultaneously). This gives 

rise to what we call an “error landscape”, and two different types of error landscapes were 

observed among the patients in the cohort. They are shown in Figure S1. 

 

 
Figure S1: Sum of squared errors between model and data, assuming that d1>d2. All model 

parameters were varied randomly, and the error is plotted as a function of the tissue CLL cell death 

rate, d1. We refer to this as the “error landscape”. Each dot in the graph represents the outcome of 

one randomly chosen parameter combination. (A) A “slow responder” is characterized by having 

the smallest error for the smallest possible tissue cell death rate within the constraint d1>d2. (B) A 

“fast responder” is characterized by an intermediate value of d1 that minimizes the error.  

 

The error landscape shown in Figure S1A is typical of a patient that shows treatment 

dynamics that are consistent with those observed in our previous study (5). That is, the 
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smallest error is observed for the smallest values of d1, given that d1>d2. As the value of d1 

is increased, the error becomes larger (Figure S1A). The tissue death rate with the smallest 

error typically lies in the range between d1=0.02-0.1 d-1, which corresponds to an average 

CLL cell life-span of 10-50 days. Other patients in the current cohort are characterized by 

a different kind of error landscape, an example of which is shown in Figure S1B. In this 

case, an increase in d1 first leads to a reduction in the error down to a minimum, beyond 

which the error then becomes larger again. The death rate d1 with the smallest error in such 

patients typically lies above d1>0.1, i.e. the average life-span of CLL cells is less than 10 

days. While there is a value of d1 where the error is the smallest, parameter combinations 

with somewhat larger errors can show model predictions that are visually still very good 

descriptions of the data. Given that data are noisy, it might thus be misleading to assume 

that the parameter combination with the smallest error is the true estimate for a given 

patient. Given that the tissue death rates, d1, in this group of patients are significantly larger 

than in the first group, we adopted the following approach. We took the parameter values 

with the smallest error in our simulations and used them as an initial guess in a steepest 

decent model fitting algorithm, given by the software Berkeley Madonna 

(http://www.berkeleymadonna.com/). We then systematically reduced the initial guess for 

the tissue death rate, d1, by using the decrement 0.01 and let this algorithm find a best fit, 

which is typically given by a local error minimum in the vicinity of the initial parameter 

guess. Once the value of d1 fell below a threshold, such a local error minimum was not 

found anymore. Instead, significantly different parameter combinations were found and the 

error between model prediction and data became significantly lager. We took the lowest 

value of the tissue death rate d1 that still yielded a local minimum with a reasonable fit and 
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assigned these parameters to the patient in question. This procedure yields the lowest tissue 

cell death rate that was still compatible with the data, and thus represents a conservative 

parameter estimate. We note that similar and perhaps slightly better fits could be obtained 

with higher tissue death rates in this group of patients. These values, however, 

corresponded to unrealistically high tissue cell death rates. Our quoted estimates should 

thus be considered as lower bounds. Even these lower bounds are clearly higher than the 

estimated death rate for the first group of patients. Note that the same procedure could be 

applied to the first patient group, yielding only a very small change in the parameter 

estimates.   

 

Finally, note that the two different types of error landscapes can be used to classify patients 

into slow and fast responders. All patients in this cohort are characterized by error 

landscapes that clearly belong to either of the two groups presented in Figure S1. This 

indicates that there is something fundamentally different in these two groups. Even though 

some uncertainty exists about the magnitude of the tissue cell death rate in the fast 

responders, as discussed above, the error landscape indicates that they are indeed distinct 

from the slower responders.  As discussed in the main text, genetic risk factors contribute 

to explaining this difference. Other, yet unknown factors, however, also seem to determine 

which response pattern is observed. A crucial factor might be whether patients have been 

previously treated with another form of therapy, or whether they are treatment naïve. Our 

previous cohort (5), in which we only observed the slow type of responders, was not 

treatment-naïve, while the current patient cohort was.   
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Enrichments of 2H2O in plasma and appearance of 2H-labeled CD19+ CLL cells in the 

PB 

The fractional enrichments of 2H2O in plasma, representing to the 2H-enrichment 

in body water, increased and reached a plateau during the first 4 weeks of labeling, while 

patients were drinking 2H2O on a daily basis (labeling period). The fraction of 2H2O in the 

body water pool increased from 0.05 ± 0.06% at baseline (week 0, mean ± SD, n=30) to 

1.09 ± 0.21% after 2 weeks (n=29) and 1.11 ± 0.31% after 4 weeks (n=29, see Fig. 2A). 

Subsequently, after discontinuation of 2H2O intake, the fraction of 2H2O in the body water 

continuously declined and reached baseline levels by 10 -14 weeks after initiation of 2H2O 

intake or 6 – 10 weeks after discontinuation of 2H2O intake (washout period).  

During the period of exposure to 2H2O, the calculated fraction of 2H-labeled CD19+ 

CLL cells increased from 0% at baseline (week 0) to 5.12 ± 4.08% after 2 weeks (n=26), 

to 10.57 ± 6.58% after 4 weeks (n=29), to 15.00 ± 7.31% after 6 weeks (n=28), and to 

19.58 ± 8.13% after 8 weeks (n=28). Values generally stabilized after week 8, with 19.60 

± 6.55% 2H-labeled CD5+CD19+ cells measured after 10 weeks (n=29), and 20.31 ± 9.27% 

after 12 weeks (n=8, see Fig. 2B).  

 

Blood CLL cell death rates estimated by computational modeling 

We further investigated cell death rates during ibrutinib treatment based on a 

previously published mathematical methodology(5). This allowed us to obtain separate 

estimates for the tissue and blood compartments by fitting a two-compartment 
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mathematical model to data on trended lymphocyte counts in the blood as well as 

volumetric measurements of tissues (Fig. 4)(5). The model is summarized in Figure 5A, 

and explained in detail above. Select comparisons between model-predicted and observed 

trended lymphocyte counts are shown in Figure 5B, demonstrating good fits. 

Characteristically, with the end of the peak redistribution lymphocytosis, a rapid decline in 

blood leukemia cell counts is noted which later converts into a slower decline. The death 

rates estimated from this model correspond to the initial, rapid decline in cell numbers, 

which should reflect the death of the majority of CLL cells present at treatment initiation. 

Using this approach, we estimated the average death rate of CLL cells in the blood among 

all patients to be 2.34 ± 1.45% per day, which is higher than the estimate derived based on 

the decline slope of ALC in the blood. The reason for this difference is that this model 

assumes a continuous influx of CLL cells from the tissues to the blood, taking place during 

the initial weeks of therapy, even during the decline phase of lymphocytosis. The model 

estimates the magnitude of this influx, its decline over time, and thus incorporates this 

effect into the death rate estimates.  

Tissue CLL cell death rates estimated by computational modeling 

The estimated rates of tissue cell death varied considerably across patients (Fig. 

5C). In another cohort of previously-treated CLL patients who received ibrutinib salvage 

therapy, we estimated that ~2.7% of cells died per day in tissue during therapy, which 

corresponds to an average CLL cell life-span of about 37 days(5). A subset of the current 

patient cohort has tissue cell death rates that are consistent with this previous estimate (Fig. 

5C), with average CLL cell life-spans ranging between 10-50 days. In such patients, the 

dynamics in the blood exhibit a pronounced lymphocytosis phase, an example of which is 
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shown in Figure 5B (upper graph). However, other patients are characterized by estimated 

tissue cell death rates that are significantly higher, where tissue leukemia cells live on 

average only between 1-10 days during therapy (Fig. 5C). Such patients tend to have a 

shorter lymphocytosis phase in the blood and a faster decline in blood leukemia counts 

(Fig. 5B, lower graph).  For each patient, simulation of the mathematical model with the 

estimated parameters outputs the tissue shrinkage dynamics over time, and the average 

time course of these computer simulations is plotted for patients with U-CLL and M-CLL 

in Figure 5D. The tissue is predicted to shrink faster in patients with U-CLL compared to 

those with M-CLL, and the predicted long-term plateau during treatment is lower for 

patients with U-CLL.  

Clinical responses 

At the time of analysis, median follow-up for all patients was 26 months and median 

treatment duration was 24 months. Twenty-seven of 30 patients (90%) continued on 

therapy without disease progression, 20 (67%) achieved partial remission, 9 (30%) 

complete remission, and 1 (3%) had stable disease, yielding an overall response rate (ORR) 

of 97%. Three patients came off study: one after 186 days due to suicide (ibrutinib-

unrelated), and two after 575 and 658 days, respectively, due to toxicity (Grade 3 

gastrointestinal hemorrhage and grade 2 joint aches and pains). Figure 3 (G and H) display 

the Kaplan Meier plots for progression-free survival (PFS) and overall survival (OS).  

The clinical outcome also correlated with the CLL cell death rates in tissue. Patients 

with complete remission showed significantly faster estimated tissue cell death rates 

(33.88±8.19%) compared to patients with partial remission (16.37±11.91%), p=0.0018. No 

difference between these two groups of patients was observed for the estimated blood death 
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rate of CLL cells. The previous section reported that faster tissue cell death rates tended to 

occur in U-CLL compared to M-CLL patients. Consistent with this, 100% of the patients 

with complete remission displayed U-CLL, while this percentage was only 35% in patients 

with partial remission, a statistically significant difference (p=0.0011). Supporting this 

picture, we further found that the doubling time of the blood ALC before treatment was 

significantly faster in patients with complete remission (9.33±3.85 months)  than in patients 

with partial remission (20.10±9.32 months), p=0.0065. These results underline the notion 

that more aggressive CLL responds better to ibrutinib therapy, presumably due to a higher 

dependence of the CLL cells on BCR signaling and BTK.    The fact that ibrutinib therapy 

does not mobilize the majority of tissue CLL cells was already demonstrated by our earlier 

mathematical modeling that also was applied to this study(5). Based on volumetric changes 

in nodal sites and spleen, we estimated tissue disease burden and correlated this with PB 

disease burden during ibrutinib therapy. We calculated in a prior cohort of previously-

treated patients that ibrutinib-induced redistribution of tissue-resident CLL cells into the 

PB accounted for only 23% of the tissue disease burden, while the remaining tissue CLL 

cells died before reaching the PB(5). These findings are recapitulated when this model is 

applied to this cohort of untreated patients. The clinical responses and response durations 

seen in this cohort are unsurprising and in line with previous reports about high activity of 

ibrutinib in untreated patients with CLL(9-11). Collectively, these data indicate that 

responses to ibrutinib are more complete and more durable when ibrutinib is used early in 

the course of the disease. 
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Supplemental Table S1  

  

ACC Reasons to start treatment  

1 progressive fatigue, lack of appetite, weight loss, recurrent infections 

2 increasing fatigue,  left upper quadrant pain, occasional night sweats 

3 hyperleukocytosis, anemia, fatigue 

4 anemia, short lymphocyte doubling time, fatigue 

5 short lymphocyte doubling time 

6 thrombocytopenia, fatigue 

7 weight loss, night sweats, hyperleukocytosis  

8 thrombocytopenia, splenomegaly 

9 short lymphocytoe doubling time 

10 progressive hyperleukocytosis, anemia, hypogammaglobulinemia, recurrent infections. 

11 thombocytopenia, recurreent infections 

12 anemia, thrombocytopenia, fatigue 

13 anemia, thrombocytopenia, lymphadenopathy 

14 severe fatigue 

15 hyperleukocytosis, thrombocytopenia 

16 anemia, thrombocytopenia, fatigue 

17 hyperleukocytosis, hepatosplenomegaly 

18 anemia, thrombocytopenia, splenomegaly 

19 anemia 

20 anemia, thrombocytopenia, fatigue 

21 anemia, hyperleukocytosis 

22 thombocytopenia 

23 anemia, hyperleukocytosis 

24 anemia, thrombocytopenia, splenomegaly 

25 hyperleukocytosis, splenomegaly 

26 thrombocytopenia, lymphadenopathy 

27 anemia 

28 anemia, thrombocytopenia, hepatosplenomegaly 

29 hyperleukocytosis, splenomegaly 

30 fatigue, thrombocytopenia 
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Supplemental figures (panels 1-30) 

Percent 2H enrichment in the DNA of PB CLL cells from the CLL patients was measured 

and converted into a fraction (f) of newly divided cells as described in Methods. After 

starting ibrutinib therapy (labeled “Start drug” in the left upper panels) in the period after 

2H2O has washed out of the body water pool, there is a stable plateau in the proportion of 

labeled CLL cells.  The absence of dilution in f (the fraction of previously divided, labeled 

CLL cells) by newly divided, unlabeled CLL cells indicates an arrest of new CLL cell birth. 

Commentary on each individual’s labeling and de-labeling patterns are included in the 

figures. 
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